36 research outputs found

    Wealth distribution in an ancient Egyptian society

    Full text link
    Modern excavations yielded a distribution of the house areas in the ancient Egyptian city Akhetaten, which was populated for a short period during the 14th century BC. Assuming that the house area is a measure of the wealth of its inhabitants allows us to make a comparison of the wealth distributions in ancient and modern societies

    Long-Time Fluctuations in a Dynamical Model of Stock Market Indices

    Full text link
    Financial time series typically exhibit strong fluctuations that cannot be described by a Gaussian distribution. In recent empirical studies of stock market indices it was examined whether the distribution P(r) of returns r(tau) after some time tau can be described by a (truncated) Levy-stable distribution L_{alpha}(r) with some index 0 < alpha <= 2. While the Levy distribution cannot be expressed in a closed form, one can identify its parameters by testing the dependence of the central peak height on tau as well as the power-law decay of the tails. In an earlier study [Mantegna and Stanley, Nature 376, 46 (1995)] it was found that the behavior of the central peak of P(r) for the Standard & Poor 500 index is consistent with the Levy distribution with alpha=1.4. In a more recent study [Gopikrishnan et al., Phys. Rev. E 60, 5305 (1999)] it was found that the tails of P(r) exhibit a power-law decay with an exponent alpha ~= 3, thus deviating from the Levy distribution. In this paper we study the distribution of returns in a generic model that describes the dynamics of stock market indices. For the distributions P(r) generated by this model, we observe that the scaling of the central peak is consistent with a Levy distribution while the tails exhibit a power-law distribution with an exponent alpha > 2, namely beyond the range of Levy-stable distributions. Our results are in agreement with both empirical studies and reconcile the apparent disagreement between their results

    The origin of power-law distributions in self-organized criticality

    Full text link
    The origin of power-law distributions in self-organized criticality is investigated by treating the variation of the number of active sites in the system as a stochastic process. An avalanche is then regarded as a first-return random walk process in a one-dimensional lattice. Power law distributions of the lifetime and spatial size are found when the random walk is unbiased with equal probability to move in opposite directions. This shows that power-law distributions in self-organized criticality may be caused by the balance of competitive interactions. At the mean time, the mean spatial size for avalanches with the same lifetime is found to increase in a power law with the lifetime.Comment: 4 pages in RevTeX, 3 eps figures. To appear in J.Phys.G. To appear in J. Phys.

    On a kinetic model for a simple market economy

    Full text link
    In this paper, we consider a simple kinetic model of economy involving both exchanges between agents and speculative trading. We show that the kinetic model admits non trivial quasi-stationary states with power law tails of Pareto type. In order to do this we consider a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution of wealth among individuals. For this equation the stationary state can be easily derived and shows a Pareto power law tail. Numerical results confirm the previous analysis

    Volatility Effects on the Escape Time in Financial Market Models

    Get PDF
    We shortly review the statistical properties of the escape times, or hitting times, for stock price returns by using different models which describe the stock market evolution. We compare the probability function (PF) of these escape times with that obtained from real market data. Afterwards we analyze in detail the effect both of noise and different initial conditions on the escape time in a market model with stochastic volatility and a cubic nonlinearity. For this model we compare the PF of the stock price returns, the PF of the volatility and the return correlation with the same statistical characteristics obtained from real market data.Comment: 12 pages, 9 figures, to appear in Int. J. of Bifurcation and Chaos, 200

    Mesoscopic modelling of financial markets

    Full text link
    We derive a mesoscopic description of the behavior of a simple financial market where the agents can create their own portfolio between two investment alternatives: a stock and a bond. The model is derived starting from the Levy-Levy-Solomon microscopic model (Econ. Lett., 45, (1994), 103--111) using the methods of kinetic theory and consists of a linear Boltzmann equation for the wealth distribution of the agents coupled with an equation for the price of the stock. From this model, under a suitable scaling, we derive a Fokker-Planck equation and show that the equation admits a self-similar lognormal behavior. Several numerical examples are also reported to validate our analysis

    Power-law distributions and Levy-stable intermittent fluctuations in stochastic systems of many autocatalytic elements

    Full text link
    A generic model of stochastic autocatalytic dynamics with many degrees of freedom wiw_i i=1,...,Ni=1,...,N is studied using computer simulations. The time evolution of the wiw_i's combines a random multiplicative dynamics wi(t+1)=λwi(t)w_i(t+1) = \lambda w_i(t) at the individual level with a global coupling through a constraint which does not allow the wiw_i's to fall below a lower cutoff given by c⋅wˉc \cdot \bar w, where wˉ\bar w is their momentary average and 0<c<10<c<1 is a constant. The dynamic variables wiw_i are found to exhibit a power-law distribution of the form p(w)∌w−1−αp(w) \sim w^{-1-\alpha}. The exponent α(c,N)\alpha (c,N) is quite insensitive to the distribution Π(λ)\Pi(\lambda) of the random factor λ\lambda, but it is non-universal, and increases monotonically as a function of cc. The "thermodynamic" limit, N goes to infty and the limit of decoupled free multiplicative random walks c goes to 0, do not commute: α(0,N)=0\alpha(0,N) = 0 for any finite NN while α(c,∞)≄1 \alpha(c,\infty) \ge 1 (which is the common range in empirical systems) for any positive cc. The time evolution of wˉ(t){\bar w (t)} exhibits intermittent fluctuations parametrized by a (truncated) L\'evy-stable distribution Lα(r)L_{\alpha}(r) with the same index α\alpha. This non-trivial relation between the distribution of the wiw_i's at a given time and the temporal fluctuations of their average is examined and its relevance to empirical systems is discussed.Comment: 7 pages, 4 figure

    Runaway Events Dominate the Heavy Tail of Citation Distributions

    Full text link
    Statistical distributions with heavy tails are ubiquitous in natural and social phenomena. Since the entries in heavy tail have disproportional significance, the knowledge of its exact shape is very important. Citations of scientific papers form one of the best-known heavy tail distributions. Even in this case there is a considerable debate whether citation distribution follows the log-normal or power-law fit. The goal of our study is to solve this debate by measuring citation distribution for a very large and homogeneous data. We measured citation distribution for 418,438 Physics papers published in 1980-1989 and cited by 2008. While the log-normal fit deviates too strong from the data, the discrete power-law function with the exponent Îł=3.15\gamma=3.15 does better and fits 99.955% of the data. However, the extreme tail of the distribution deviates upward even from the power-law fit and exhibits a dramatic "runaway" behavior. The onset of the runaway regime is revealed macroscopically as the paper garners 1000-1500 citations, however the microscopic measurements of autocorrelation in citation rates are able to predict this behavior in advance.Comment: 6 pages, 5 Figure

    Self-similarity and power-like tails in nonconservative kinetic models

    Full text link
    In this paper, we discuss the large--time behavior of solution of a simple kinetic model of Boltzmann--Maxwell type, such that the temperature is time decreasing and/or time increasing. We show that, under the combined effects of the nonlinearity and of the time--monotonicity of the temperature, the kinetic model has non trivial quasi-stationary states with power law tails. In order to do this we consider a suitable asymptotic limit of the model yielding a Fokker-Planck equation for the distribution. The same idea is applied to investigate the large-time behavior of an elementary kinetic model of economy involving both exchanges between agents and increasing and/or decreasing of the mean wealth. In this last case, the large-time behavior of the solution shows a Pareto power law tail. Numerical results confirm the previous analysis
    corecore